
How I designed a  
ML prediction service

Saket Joshi | April 15, 2023



Saket Joshi
Applying for a Summer internship at Twitter!

I am a graduate student studying Data Science at 
Harvard University. I did my undergraduate education 
in Computer Science at IIT Tirupati, and am especially 
interested in Software engineering, Machine learning, 
and computational finance (Physics is my favorite 
though).  I love to read non-fiction and in my free time, 
you will find me tinkering with the latest and shiniest 
frameworks, and trying to get a new perspective 
wherever possible. I also enjoy a variety of sports, 
including Chess, Skiing, Table-tennis and running.

Hi, I am



• Fourkites is a supply chain visibility company 
• The goal is to process streaming geolocation pings and 

provide ETA (Estimated time of arrival) and other ML based 
analytics estimates.

Problem Context : ETA as a service



• The shipments are multi-modal, multi-day journeys and have to incorporate 
factors such as  
• driving regulation laws 
• driver rest patterns 
• Country border crossings (European, US-Canada-Mexico routes) 
• warehouse / cargo vessel appointment details 
• extreme weather forecasts

Problem Context : ETA as a service
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Objective

Unique Functional requirements

◦ Several ML models (100’s of models), expecting scalability requirements of up to 10^4 models 
◦ ML models -  
◦ Ensemble models 
◦ High variance in model size (from ~10MB to ~2GB)  Why? 
◦ Implemented in python  

◦ High variance in request volume to different models 
◦ Up to 1 minute of Latency is acceptable 
◦ Every request has an associated model_id mapping which single model has to serve the request

Description of Problem

◦ Design a streaming service to serve ML model predictions



Streaming System Design

◦ Proposal 1 - Read batch request -> sort requests by model -> read model from disk -> 
process request 
◦ Every batch request can contain requests for all models.  
◦ Reading all them from disk introduces heavy latency.  
◦ May need to read up ~100GB of models from disk for every batch - Highly inefficient 

◦ Proposal 2 - Use Large memory machines 
◦ To scale processing power, need several machines. Large memory machines are more 

expensive. 
◦ Vertical scaling ceiling - Cannot expand to additional capacity of 1000’s of models.

Challenge - How do you serve thousands of different ML models requests?

 All models do not fit in Memory



Streaming System Design



Streaming System Design
1. Model_id based partition



Streaming System Design

Challenge - How do you serve thousands of different ML models requests?

◦ Partition requests by model_id 
◦ Messaging Queue - Kafka. Distributed Spark computing cluster 
◦ Read and redirect messages from input Kafka topic T1 to new topic T2 with model_id 

based partitioning.  
◦ For example, if T2 has 20 partitions, and there are 200 model_ids, each partition will be 

assigned on an average 10 model_ids. 
◦ Q : What configuration do you use for this mapping?



Streaming System Design

2. Model Prediction



Streaming System Design

Challenge - How do you serve thousands of different ML models requests?

◦ Model agnostic compute units 
◦ Each compute unit subscribes to Kafka T2 topic. Gets assigned one or more partitions 

by the Kafka consumption Load balancer. 
◦ One compute unit is only reading and processing requests for model_ids for assigned 

partitions. 
◦ Which models does each compute unit keep in memory? A static assignment of models 

to compute units is not fault tolerant.  
◦ Replication of compute units serving the same model - Static and Inefficient  
◦ Hence we read models from persistent storage into a Cache Queue



Streaming System Design
Challenge - How do you serve thousands of different ML models requests?

◦ Model agnostic compute units 
◦ Each compute unit instead reads models from model store into Cache queue. (LRU) 
◦ This allows dynamic reallocation of compute units and models mapping 
◦ If unit is reassigned to new partition, will fetch model difference from model store 
◦ If unit fails, corresponding partitions are mapped to other units, which will process increased 

model counts 
◦ Handles scenario where a large proportion of models get very few prediction requests but 

still have to be served 
◦ For increased capacity, this architecture can be scaled both horizontally and vertically



Streaming System Design

3. Configuration?



Streaming System Design
Challenge - Q : What configuration do you use for Kafka partition mapping?

◦ We use 2 additional services - 
◦ Prometheus for monitoring and alerting Kafka volume and performance 
◦ Grafana / Kibana for streaming data exploration and analysis 

◦ We run a Knapsack problem on model request volume and number of to periodically generate 
appropriate mappings. The weight we want to assign to each item is [1 , volume]. 

◦ General persistence in model requests volume - Requires only Infrequent rebalancing. 
◦ Example mapping configuration : {     “partition_i” -> list([model_ids]     }

◦ Request volume for model predictions have very high variance 
◦ Random assignment of equal models to partitions can lead to some partitions serving a very 

high volume of requests.  
◦ For eg. Certain models may get ~10 req/week, another might get ~10000 req/hour 

◦ We want to balance 2 things across partitions -  
◦ Number of models 
◦ Volume of requests



Streaming System Design

Challenge - Q : What happens when there are model updates or there is a new model?

◦ Rebalancing Kafka partitions - 
◦ By default, N-1th partition is reserved for model_ids which are not mapped. New model gets 

assigned to this partition. 
◦ These models are mapped to partitions on the next periodic knapsack mapping cycle. 
◦ There is no wastage of resources by reserving a partition.  

◦ Model updates are rolled out by repointing the compute units to latest model versions in the 
model store. 
◦ This also enables partial rollout redeployment where compute units are restarted/repointed 

sequentially. 
◦ No downtime!

◦ Models are trained periodically and need to be updated 
◦ New models are added frequently to the prediction service 
◦ New models have a cold start problem - Prediction requests volume is not known



Design choices
Why - Kafka?

◦ High Throughput: Kafka can handle and process millions of messages per second, making it 
suitable for high-volume data streaming applications. 

◦ Fault-tolerant: Kafka is highly resilient and can replicate data across multiple nodes, so even 
if one node fails, data is not lost. 

◦ Durability & Replay capabilities: Kafka stores data for a configurable amount of time, so that 
data can be retrieved and replayed if needed.

Why - Spark Streaming?

◦ Scalability: Spark Streaming is highly scalable and can handle large volumes of data streams in 
a distributed manner.  

◦ Open Source: Like Kafka, Spark Streaming is also open-source software, which means it is free 
to use and has a large and active community of developers contributing to its development 
and improvement.  

◦ High performance: Spark Streaming is built on top of Apache Spark, which is known for its 
speed and high-performance processing capabilities



Conclusions
We designed a service to  

process ML prediction requests for a large number of models 
with High variance in model size 
and high variance in request volume

Other design and implementation challenges! 
- How do you build a pipeline to train and do performance monitoring of such a large 

number of models? 
- Monitoring and alerting mechanism for excessive model reads from disk 
- Measuring the effectiveness of the ML system, both from a system standpoint (Fault 

tolerance, system availability, etc.) and model performance standpoint (accuracy metrics, 
data quality, etc.) 

- Design Trade-Offs?



Discussion


