
How I designed a
ML prediction service

Saket Joshi | April 15, 2023

Saket Joshi
Applying for a Summer internship at Twitter!

I am a graduate student studying Data Science at
Harvard University. I did my undergraduate education
in Computer Science at IIT Tirupati, and am especially
interested in Software engineering, Machine learning,
and computational finance (Physics is my favorite
though). I love to read non-fiction and in my free time,
you will find me tinkering with the latest and shiniest
frameworks, and trying to get a new perspective
wherever possible. I also enjoy a variety of sports,
including Chess, Skiing, Table-tennis and running.

Hi, I am

• Fourkites is a supply chain visibility company
• The goal is to process streaming geolocation pings and

provide ETA (Estimated time of arrival) and other ML based
analytics estimates.

Problem Context : ETA as a service

• The shipments are multi-modal, multi-day journeys and have to incorporate
factors such as
• driving regulation laws
• driver rest patterns
• Country border crossings (European, US-Canada-Mexico routes)
• warehouse / cargo vessel appointment details
• extreme weather forecasts

Problem Context : ETA as a service

Objective

Description of Problem

◦ Design a streaming service to serve ML model predictions

Objective
◦ Design a streaming service to serve ML model predictions

Description of Problem

Objective

Unique Functional requirements

◦ Several ML models (100’s of models), expecting scalability requirements of up to 10^4 models
◦ ML models -
◦ Ensemble models
◦ High variance in model size (from ~10MB to ~2GB) Why?
◦ Implemented in python

◦ High variance in request volume to different models
◦ Up to 1 minute of Latency is acceptable
◦ Every request has an associated model_id mapping which single model has to serve the request

Description of Problem

◦ Design a streaming service to serve ML model predictions

Streaming System Design

◦ Proposal 1 - Read batch request -> sort requests by model -> read model from disk ->
process request
◦ Every batch request can contain requests for all models.
◦ Reading all them from disk introduces heavy latency.
◦ May need to read up ~100GB of models from disk for every batch - Highly inefficient

◦ Proposal 2 - Use Large memory machines
◦ To scale processing power, need several machines. Large memory machines are more

expensive.
◦ Vertical scaling ceiling - Cannot expand to additional capacity of 1000’s of models.

Challenge - How do you serve thousands of different ML models requests?

 All models do not fit in Memory

Streaming System Design

Streaming System Design
1. Model_id based partition

Streaming System Design

Challenge - How do you serve thousands of different ML models requests?

◦ Partition requests by model_id
◦ Messaging Queue - Kafka. Distributed Spark computing cluster
◦ Read and redirect messages from input Kafka topic T1 to new topic T2 with model_id

based partitioning.
◦ For example, if T2 has 20 partitions, and there are 200 model_ids, each partition will be

assigned on an average 10 model_ids.
◦ Q : What configuration do you use for this mapping?

Streaming System Design

2. Model Prediction

Streaming System Design

Challenge - How do you serve thousands of different ML models requests?

◦ Model agnostic compute units
◦ Each compute unit subscribes to Kafka T2 topic. Gets assigned one or more partitions

by the Kafka consumption Load balancer.
◦ One compute unit is only reading and processing requests for model_ids for assigned

partitions.
◦ Which models does each compute unit keep in memory? A static assignment of models

to compute units is not fault tolerant.
◦ Replication of compute units serving the same model - Static and Inefficient
◦ Hence we read models from persistent storage into a Cache Queue

Streaming System Design
Challenge - How do you serve thousands of different ML models requests?

◦ Model agnostic compute units
◦ Each compute unit instead reads models from model store into Cache queue. (LRU)
◦ This allows dynamic reallocation of compute units and models mapping
◦ If unit is reassigned to new partition, will fetch model difference from model store
◦ If unit fails, corresponding partitions are mapped to other units, which will process increased

model counts
◦ Handles scenario where a large proportion of models get very few prediction requests but

still have to be served
◦ For increased capacity, this architecture can be scaled both horizontally and vertically

Streaming System Design

3. Configuration?

Streaming System Design
Challenge - Q : What configuration do you use for Kafka partition mapping?

◦ We use 2 additional services -
◦ Prometheus for monitoring and alerting Kafka volume and performance
◦ Grafana / Kibana for streaming data exploration and analysis

◦ We run a Knapsack problem on model request volume and number of to periodically generate
appropriate mappings. The weight we want to assign to each item is [1 , volume].

◦ General persistence in model requests volume - Requires only Infrequent rebalancing.
◦ Example mapping configuration : { “partition_i” -> list([model_ids] }

◦ Request volume for model predictions have very high variance
◦ Random assignment of equal models to partitions can lead to some partitions serving a very

high volume of requests.
◦ For eg. Certain models may get ~10 req/week, another might get ~10000 req/hour

◦ We want to balance 2 things across partitions -
◦ Number of models
◦ Volume of requests

Streaming System Design

Challenge - Q : What happens when there are model updates or there is a new model?

◦ Rebalancing Kafka partitions -
◦ By default, N-1th partition is reserved for model_ids which are not mapped. New model gets

assigned to this partition.
◦ These models are mapped to partitions on the next periodic knapsack mapping cycle.
◦ There is no wastage of resources by reserving a partition.

◦ Model updates are rolled out by repointing the compute units to latest model versions in the
model store.
◦ This also enables partial rollout redeployment where compute units are restarted/repointed

sequentially.
◦ No downtime!

◦ Models are trained periodically and need to be updated
◦ New models are added frequently to the prediction service
◦ New models have a cold start problem - Prediction requests volume is not known

Design choices
Why - Kafka?

◦ High Throughput: Kafka can handle and process millions of messages per second, making it
suitable for high-volume data streaming applications.

◦ Fault-tolerant: Kafka is highly resilient and can replicate data across multiple nodes, so even
if one node fails, data is not lost.

◦ Durability & Replay capabilities: Kafka stores data for a configurable amount of time, so that
data can be retrieved and replayed if needed.

Why - Spark Streaming?

◦ Scalability: Spark Streaming is highly scalable and can handle large volumes of data streams in
a distributed manner.

◦ Open Source: Like Kafka, Spark Streaming is also open-source software, which means it is free
to use and has a large and active community of developers contributing to its development
and improvement.

◦ High performance: Spark Streaming is built on top of Apache Spark, which is known for its
speed and high-performance processing capabilities

Conclusions
We designed a service to

process ML prediction requests for a large number of models
with High variance in model size
and high variance in request volume

Other design and implementation challenges!
- How do you build a pipeline to train and do performance monitoring of such a large

number of models?
- Monitoring and alerting mechanism for excessive model reads from disk
- Measuring the effectiveness of the ML system, both from a system standpoint (Fault

tolerance, system availability, etc.) and model performance standpoint (accuracy metrics,
data quality, etc.)

- Design Trade-Offs?

Discussion

