
How I designed a

ML prediction service

Saket Joshi | April 15, 2023

Saket Joshi
Applying for a Summer internship at Twitter!

I am a graduate student studying Data Science at
Harvard University. I did my undergraduate education
in Computer Science at IIT Tirupati, and am especially
interested in Software engineering, Machine learning,
and computational finance (Physics is my favorite
though). I love to read non-fiction and in my free time,
you will find me tinkering with the latest and shiniest
frameworks, and trying to get a new perspective
wherever possible. I also enjoy a variety of sports,
including Chess, Skiing, Table-tennis and running.

Hi, I am

• Fourkites is a supply chain visibility company

• The goal is to process streaming geolocation pings and

provide ETA (Estimated time of arrival) and other ML based
analytics estimates.

Problem Context : ETA as a service

• The shipments are multi-modal, multi-day journeys and have to incorporate
factors such as

• driving regulation laws

• driver rest patterns

• Country border crossings (European, US-Canada-Mexico routes)

• warehouse / cargo vessel appointment details

• extreme weather forecasts

Problem Context : ETA as a service

Objective

Description of Problem

◦ Design a streaming service to serve ML model predictions

Objective
◦ Design a streaming service to serve ML model predictions

Description of Problem

Objective

Unique Functional requirements

◦ Several ML models (100’s of models), expecting scalability requirements of up to 10^4 models

◦ ML models -

◦ Ensemble models

◦ High variance in model size (from ~10MB to ~2GB) Why?

◦ Implemented in python

◦ High variance in request volume to different models

◦ Up to 1 minute of Latency is acceptable

◦ Every request has an associated model_id mapping which single model has to serve the request

Description of Problem

◦ Design a streaming service to serve ML model predictions

Streaming System Design

◦ Proposal 1 - Read batch request -> sort requests by model -> read model from disk ->
process request

◦ Every batch request can contain requests for all models.

◦ Reading all them from disk introduces heavy latency.

◦ May need to read up ~100GB of models from disk for every batch - Highly inefficient

◦ Proposal 2 - Use Large memory machines

◦ To scale processing power, need several machines. Large memory machines are more

expensive.

◦ Vertical scaling ceiling - Cannot expand to additional capacity of 1000’s of models.

Challenge - How do you serve thousands of different ML models requests?

 All models do not fit in Memory

Streaming System Design

Streaming System Design
1. Model_id based partition

Streaming System Design

Challenge - How do you serve thousands of different ML models requests?

◦ Partition requests by model_id

◦ Messaging Queue - Kafka. Distributed Spark computing cluster

◦ Read and redirect messages from input Kafka topic T1 to new topic T2 with model_id

based partitioning.

◦ For example, if T2 has 20 partitions, and there are 200 model_ids, each partition will be

assigned on an average 10 model_ids.

◦ Q : What configuration do you use for this mapping?

Streaming System Design

2. Model Prediction

Streaming System Design

Challenge - How do you serve thousands of different ML models requests?

◦ Model agnostic compute units

◦ Each compute unit subscribes to Kafka T2 topic. Gets assigned one or more partitions

by the Kafka consumption Load balancer.

◦ One compute unit is only reading and processing requests for model_ids for assigned

partitions.

◦ Which models does each compute unit keep in memory? A static assignment of models

to compute units is not fault tolerant.

◦ Replication of compute units serving the same model - Static and Inefficient

◦ Hence we read models from persistent storage into a Cache Queue

Streaming System Design
Challenge - How do you serve thousands of different ML models requests?

◦ Model agnostic compute units

◦ Each compute unit instead reads models from model store into Cache queue. (LRU)

◦ This allows dynamic reallocation of compute units and models mapping

◦ If unit is reassigned to new partition, will fetch model difference from model store

◦ If unit fails, corresponding partitions are mapped to other units, which will process increased

model counts

◦ Handles scenario where a large proportion of models get very few prediction requests but

still have to be served

◦ For increased capacity, this architecture can be scaled both horizontally and vertically

Streaming System Design

3. Configuration?

Streaming System Design
Challenge - Q : What configuration do you use for Kafka partition mapping?

◦ We use 2 additional services -

◦ Prometheus for monitoring and alerting Kafka volume and performance

◦ Grafana / Kibana for streaming data exploration and analysis

◦ We run a Knapsack problem on model request volume and number of to periodically generate
appropriate mappings. The weight we want to assign to each item is [1 , volume].

◦ General persistence in model requests volume - Requires only Infrequent rebalancing.

◦ Example mapping configuration : { “partition_i” -> list([model_ids] }

◦ Request volume for model predictions have very high variance

◦ Random assignment of equal models to partitions can lead to some partitions serving a very

high volume of requests.

◦ For eg. Certain models may get ~10 req/week, another might get ~10000 req/hour

◦ We want to balance 2 things across partitions -

◦ Number of models

◦ Volume of requests

Streaming System Design

Challenge - Q : What happens when there are model updates or there is a new model?

◦ Rebalancing Kafka partitions -

◦ By default, N-1th partition is reserved for model_ids which are not mapped. New model gets

assigned to this partition.

◦ These models are mapped to partitions on the next periodic knapsack mapping cycle.

◦ There is no wastage of resources by reserving a partition.

◦ Model updates are rolled out by repointing the compute units to latest model versions in the
model store.

◦ This also enables partial rollout redeployment where compute units are restarted/repointed

sequentially.

◦ No downtime!

◦ Models are trained periodically and need to be updated

◦ New models are added frequently to the prediction service

◦ New models have a cold start problem - Prediction requests volume is not known

Design choices
Why - Kafka?

◦ High Throughput: Kafka can handle and process millions of messages per second, making it
suitable for high-volume data streaming applications.

◦ Fault-tolerant: Kafka is highly resilient and can replicate data across multiple nodes, so even
if one node fails, data is not lost.

◦ Durability & Replay capabilities: Kafka stores data for a configurable amount of time, so that
data can be retrieved and replayed if needed.

Why - Spark Streaming?

◦ Scalability: Spark Streaming is highly scalable and can handle large volumes of data streams in
a distributed manner.

◦ Open Source: Like Kafka, Spark Streaming is also open-source software, which means it is free
to use and has a large and active community of developers contributing to its development
and improvement.

◦ High performance: Spark Streaming is built on top of Apache Spark, which is known for its
speed and high-performance processing capabilities

Conclusions
We designed a service to

process ML prediction requests for a large number of models

with High variance in model size

and high variance in request volume

Other design and implementation challenges!

- How do you build a pipeline to train and do performance monitoring of such a large

number of models?

- Monitoring and alerting mechanism for excessive model reads from disk

- Measuring the effectiveness of the ML system, both from a system standpoint (Fault

tolerance, system availability, etc.) and model performance standpoint (accuracy metrics,
data quality, etc.)

- Design Trade-Offs?

Discussion

